Two Characterizations of Finite Quasi-hopf Algebras

نویسنده

  • PETER SCHAUENBURG
چکیده

Let H be a finite-dimensional quasibialgebra. We show that H is a quasi-Hopf algebra if and only if the monoidal category of its finite-dimensional left modules is rigid, if and only if a structure theorem for Hopf modules over H holds. We also show that a dual structure theorem for Hopf modules over a coquasibialgebra H holds if and only if the category of finite-dimensional right H-comodules is rigid; this is not equivalent to H being a coquasi-Hopf algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.

For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of  Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of  Hom-tensor relations have been st...

متن کامل

The quantum double for quasitriangular quasi-Hopf algebras

Let D(H) be the quantum double associated to a finite dimensional quasi-Hopf algebra H, as in [9] and [10]. In this note, we first generalize a result of Majid [15] for Hopf algebras, and then prove that the quantum double of a finite dimensional quasitriangular quasi-Hopf algebra is a biproduct in the sense of [4].

متن کامل

Integrals for (dual) Quasi-hopf Algebras. Applications *

A classical result in the theory of Hopf algebras concerns the uniqueness and existence of inte-grals: for an arbitrary Hopf algebra, the integral space has dimension ≤ 1, and for a finite dimensional Hopf algebra, this dimension is exaclty one. We generalize these results to quasi-Hopf algebras and dual quasi-Hopf algebras. In particular, it will follow that the bijectivity of the antipode fol...

متن کامل

ar X iv : m at h / 01 10 06 3 v 1 [ m at h . Q A ] 5 O ct 2 00 1 Integrals for ( dual ) quasi

A classical result in the theory of Hopf algebras concerns the uniqueness and existence of inte-grals: for an arbitrary Hopf algebra, the integral space has dimension ≤ 1, and for a finite dimensional Hopf algebra, this dimension is exaclty one. We generalize these results to quasi-Hopf algebras and dual quasi-Hopf algebras. In particular, it will follow that the bijectivity of the antipode fol...

متن کامل

Quasi-triangular structures on Hopf algebras with positive bases

A basis B of a finite dimensional Hopf algebra H is said to be positive if all the structure constants of H relative to B are non-negative. A quasi triangular structure R ∈ H ⊗ H is said to be positive with respect to B if it has non-negative coefficients in the basis B ⊗ B of H ⊗ H. In our earlier work, we have classified all finite dimensional Hopf algebras with positive bases. In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002