Two Characterizations of Finite Quasi-hopf Algebras
نویسنده
چکیده
Let H be a finite-dimensional quasibialgebra. We show that H is a quasi-Hopf algebra if and only if the monoidal category of its finite-dimensional left modules is rigid, if and only if a structure theorem for Hopf modules over H holds. We also show that a dual structure theorem for Hopf modules over a coquasibialgebra H holds if and only if the category of finite-dimensional right H-comodules is rigid; this is not equivalent to H being a coquasi-Hopf algebra.
منابع مشابه
Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.
For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of Hom-tensor relations have been st...
متن کاملThe quantum double for quasitriangular quasi-Hopf algebras
Let D(H) be the quantum double associated to a finite dimensional quasi-Hopf algebra H, as in [9] and [10]. In this note, we first generalize a result of Majid [15] for Hopf algebras, and then prove that the quantum double of a finite dimensional quasitriangular quasi-Hopf algebra is a biproduct in the sense of [4].
متن کاملIntegrals for (dual) Quasi-hopf Algebras. Applications *
A classical result in the theory of Hopf algebras concerns the uniqueness and existence of inte-grals: for an arbitrary Hopf algebra, the integral space has dimension ≤ 1, and for a finite dimensional Hopf algebra, this dimension is exaclty one. We generalize these results to quasi-Hopf algebras and dual quasi-Hopf algebras. In particular, it will follow that the bijectivity of the antipode fol...
متن کاملar X iv : m at h / 01 10 06 3 v 1 [ m at h . Q A ] 5 O ct 2 00 1 Integrals for ( dual ) quasi
A classical result in the theory of Hopf algebras concerns the uniqueness and existence of inte-grals: for an arbitrary Hopf algebra, the integral space has dimension ≤ 1, and for a finite dimensional Hopf algebra, this dimension is exaclty one. We generalize these results to quasi-Hopf algebras and dual quasi-Hopf algebras. In particular, it will follow that the bijectivity of the antipode fol...
متن کاملQuasi-triangular structures on Hopf algebras with positive bases
A basis B of a finite dimensional Hopf algebra H is said to be positive if all the structure constants of H relative to B are non-negative. A quasi triangular structure R ∈ H ⊗ H is said to be positive with respect to B if it has non-negative coefficients in the basis B ⊗ B of H ⊗ H. In our earlier work, we have classified all finite dimensional Hopf algebras with positive bases. In this paper,...
متن کامل